domingo, 30 de mayo de 2010

La Mecánica Estadística en la Universidad

Hoy día, la Mecánica Estadística es materia de Estudio en las Facultades de Física mediante currículos y programas de trabajo, estudio e investigación que se desarrollan y renuevan sin cesar, desde enfoques muy diversos en las distintas universidades. Existen Departamentos de Física Estadística, dedicados a la docencia e investigación en el campo, en múltiples Facultades de Física, de Química, o en
Centros de Ingeniería, siendo diferentes en las distintas universidades tanto los
niveles de información a los estudiantes como los sesgos o direcciones de las pautas de investigación en Física Estadística.


Ronny J Duarte C

sábado, 29 de mayo de 2010

Evidencia de entropía

Cuando se plantea la pregunta: ¿por qué ocurren los sucesos de la manera que ocurren, y no al revés? se busca una respuesta que indique cuál es el sentido de los sucesos en la naturaleza. Por ejemplo, si se ponen en contacto dos trozos de metal con distinta temperatura, se anticipa que finalmente el trozo caliente se enfriará, y el trozo frío se calentará, finalizando en equilibrio térmico. Sin embargo, el proceso inverso, el trozo caliente calentándose y el trozo frío enfriándose, es muy improbable a pesar de conservar la energía. El universo tiende a distribuir la energía uniformemente; es decir, a maximizar la entropía
Ronny j duarte c

Relación Estadística-Termodinámica

La relación entre estados microscópicos y macroscópicos (es decir, la termodinámica) viene dada por la famosa fórmula de Boltzmann de la entropía:


Donde:
Ω es el número de estados microscópicos compatibles con una energía, volumen y número de partículas dado
kB es la constante de Boltzmann.
En el término de la izquierda tenemos la termodinámica mediante la entropía definida en función de sus variables naturales, lo que da una información termodinámica completa del sistema. A la derecha tenemos las configuraciones microscópicas que definen la entropía mediante esta fórmula. Estas configuraciones se obtienen teniendo en cuenta el modelo que hagamos del sistema real a través de su Hamiltoniano mecánico.

Ronny j duarte C

Aplicación de la mecánica estadística

Empíricamente la termodinámica ha estudiado los gases y ha establecido su comportamiento macroscópico con alto grado de acierto. Gracias a la fisica estadística es posible deducir las leyes termodinámicas que rigen el comportamiento macroscópico de este gas, como la ecuación de estado del gas ideal o la ley de Boyle-Mariotte, a partir de la suposición de que las partículas en el gas no están sometidas a ningún potencial y se mueven libremente con una energía cinética igual a  colisionando entre sí y con las paredes del recipiente de forma elástica. El comportamiento macroscópico del gas depende de tan sólo unas pocas variables macroscópicas (como la presión, el volumen y la temperatura). Este enfoque particular para estudiar el comportamiento de los gases se llama teoría cinética.
Ronny j duarte C

Suma de fuerzas

Cuando sobre un cuerpo o sólido rígido actúan varias fuerzas que se aplican en el mismo punto, el cálculo de la fuerza resultante resulta trivial: basta sumarlas vectorialmente y aplicar el vector resultante en el punto común de aplicación. Sin embargo, cuando existen fuerzas con puntos de aplicación diferentes es necesario determinar el punto de aplicación de la fuerza resultante. Para fuerzas no paralelas esto puede hacerse sumando las fuerzas dos a dos. Para ello se consideran dos de las fuerzas trazan rectas prolongando las fuerzas en ambos sentidos y buscando su intersección. Esa intersección será un punto de paso de la fuerza suma de las dos. A continuación se substituyen las dos fuerzas por una única fuerza vectorial suma de las dos anteriores aplicada en el punto de intersección. Esto se repite n-1 veces para un sistema de n fuerzas y se obtiene el punto de paso de la resultante.
Ronny j duarte C

Análisis del equilibrio

La estática proporciona, mediante el empleo de la mecánica del sólido rígido, solución a los problemas denominados isostáticos. En estos problemas, es suficiente plantear las condiciones básicas de equilibrio, que son:
1. El resultado de la suma de fuerzas es nulo.
2. El resultado de la suma de momentos respecto a un punto es nulo.
• Estas dos condiciones, mediante el álgebra vectorial, se convierten en un sistema de ecuaciones; la resolución de este sistema de ecuaciones, es resolver la condición de equilibrio.
• Existen métodos de resolución de este tipo de problemas estáticos mediante gráficos, heredados de los tiempos en que la complejidad de la resolución de sistemas de ecuaciones se evitaba mediante la geometría, si bien actualmente se tiende al cálculo por ordenador.
Ronny j duarte C

¿Que es la Mecánica estática?

Al estudiar sistemas compuestos por un número muy grande de componentes atómicos la física abandona el proyecto de analizar detalladamente trayectorias o estados cuánticos, y lo substituye por un tratamiento estadístico. Durante el pasaje de la mecánica clásica a la mecánica estadística, que se realiza durante la segunda mitad del siglo XIX, los esquemas basados en probabilidades prevalecen sobre los conceptos de órbitas exactamente prescriptas. Maxwell introduce el nombre mecánica estadística en una publicación de 1879. La probabilidad comienza a reemplazar la certeza. Sin embargo, paradojalmente, es justamente el enorme número de elementos microscópicos que componen los materiales el que permite resultados estadísticos de gran precisión y confiabilidad.

Fuente: http://en.wikipedia.org/wiki/Statistical_mechanics
Ronny j duarte C

¿Que es la física de la materia condensada?

La física de la materia condensada se ocupa de las características físicas macroscópicas de la materia. La física de la materia concentrada se refiere particularmente a las faces condensadas. Los ejemplos más comunes de la materia condensada son los sólidos y los líquidos. La Física de la Materia Condensada se considera como el campo más extenso de la física contemporánea. Como reseña histórica se puede señalar que la física de la materia condensada nació a partir de la física del estado sólido, que ahora es considerado como uno de sus subcampos principales. El término "física condensada de la materia" fue acuñado, al parecer, por Philip Anderson. El nombre física condensada se debe porque muchos de los conceptos y técnicas desarrollados para estudiar sólidos se aplican también a sistemas fluidos.


fuente: http://en.wikipedia.org/wiki/Condensed_matter_physics

jueves, 27 de mayo de 2010

La entropía como desorden

 

10

 

La entropía como desorden

En todos los libros de termodinámica se interpretan la entropía como una medida del desorden del sistema. De hecho, a veces se enuncia el segundo principio de la termodinámica diciendo que el desorden de un sistema aislado sólo aumenta. Es importante saber que no obstante esta relación viene, como acabamos de saber, de la mecánica estadística. La termodinámica no es capaz de establecer esta relación por sí misma, pues no se preocupa en absoluto por los estados microscópicos. En este sentido la mecánica estadística es capaz de demostrar la termodinámica, ya que partiendo de unos principio más elementales (a saber, los mecánicos) obtiene por deducción estadística el segundo principio.

 

Kevin Osman Perez Leon EES Secc 1

 

 

El modelo de Ising

 

9

El modelo de Ising es un modelo físico propuesto para estudiar el comportamiento de materiales ferromagnéticos. Se trata de un modelo paradigmático de la Mecánica Estadística, en parte porque fue uno de los primeros en aparecer, pero sobre todo porque es de los pocos modelos útiles (no sólo pedagógicamente) que tiene solución analítica exacta (esto es, sin cálculos aproximados). Esto lo hace muy útil para ensayar nuevos tipos de aproximaciones y luego comparar con el resultado real.

Fue propuesto por Ernst Ising, quien intentaba demostrar que el sistema presentaba una transición de fase. Demostró que en una dimensión no existía tal transición, cosa que le provocó una profunda desmoralización e hizo que renunciara a la física estadística. A esta primera aproximación le siguió la del modelo de Ising en dos dimensiones, resuelta por Lars Onsager. La solución de Onsager al modelo de Ising en dos dimensiones sin campo demostró que la física estadística era capaz de describir transiciones de fase (pues como veremos, éste modelo presenta una) lo que terminó de consolidar definitivamente la mecánica estadística.

Descripción cualitativa

Supongamos N partículas colocadas en una matriz cuadrada (algo así las plantas en una parcela de vid). Cada partícula puede apuntar sólo en dos sentidos, arriba o abajo. Cada una de esas orientaciones se llaman espín de la partícula. El sentido del espín queda determinado mediante la interacción de la partícula con sus vecinas y por fluctuaciones térmicas.

El Hamiltoniano del modelo

La energía del sistema es

donde: H es el hamiltoniano del sistema

i,j

denota una suma sobre partículas vecinas entre sí

σi es el espín de la partícula i-ésima, que puede tomar sólo dos valores, +1 y -1

J es el factor de escala entre interacción entre espines y energía. Es un parámetro de la teoría.

Por ejemplo, supongamos que tenemos todos los espines apuntando hacia arriba, esto es σi = 1 siempre. En este caso, la energía total es J veces el número diferentes parejas de próximos vecinos, que es 2N (se podría pensar que cada espín tiene cuatro espines, pero no debemos contarlos dos veces por tanto tenemos que dividir por dos). Por tanto la energía del estado fundamental es H0 = − 2JN. El primer estado excitado es que un sólo espín apunte hacia abajo, con energía H1 = − 2JN + 8J y así sucesivamente.

La función de partición

El problema se resuelve simplemente calculando la función de partición (véase Colectivo Canónico):

donde se refiere a suma sobre todas las configuraciones posibles de los N espines (llamados micro estados).

Kevin Osman Perez Leon EES Secc 1

Radiación térmica o radiación calorífica

8

Se denomina radiación térmica o radiación calorífica a la emitida por un cuerpo debido a su temperatura. Todos los cuerpos con temperatura superior a 0 K emiten radiación electromagnética, siendo su intensidad dependiente de la temperatura y de la longitud de onda considerada. En lo que respecta a la transferencia de calor la radiación relevante es la comprendida en el rango de longitudes de onda de 0,1µm a 100µm, abarcando por tanto parte de la región ultravioleta, la visible y la infrarroja del espectro electromagnético.

La materia en un estado condensado (sólido o líquido) emite un espectro de radiación continuo. La frecuencia de onda emitida por radiación térmica es una densidad de probabilidad que depende solo de la temperatura.

Los cuerpos negros emiten radiación térmica con el mismo espectro correspondiente a su temperatura, independientemente de los detalles de su composición. Para el caso de un cuerpo negro, la función de densidad de probabilidad de la frecuencia de onda emitida está dada por la ley de radiación térmica de Planck, la ley de Wien da la frecuencia de radiación emitida más probable y la ley de Stefan-Boltzmann da el total de energía emitida por unidad de tiempo y superficie emisora (esta energía depende de la cuarta potencia de la temperatura absoluta).

A temperatura ambiente, vemos los cuerpos por la luz que reflejan, dado que por sí mismos no emiten luz. Si no se hace incidir luz sobre ellos, si no se los ilumina, no podemos verlos. A temperaturas más altas, vemos los cuerpos debido a la luz que emiten, pues en este caso son luminosos por sí mismos. Así, es posible determinar la temperatura de un cuerpo de acuerdo a su color, pues un cuerpo que es capaz de emitir luz se encuentra a altas temperaturas.

La relación entre la temperatura de un cuerpo y el espectro de frecuencias de su radiación emitida se utiliza en los pirómetros ópticos.

Kevin Osman Perez Leon EES Secc 1

La ley de Stefan-Boltzmann

7

La ley de Stefan-Boltzmann establece que un cuerpo negro emite radiación térmica con una potencia emisiva superficial (W/m²) proporcional a la cuarta potencia de su temperatura:

Donde Te es la temperatura efectiva o sea la temperatura absoluta de la superficie y sigma es la constante de Stefan-Boltzmann: .

Esta potencia emisiva de un cuerpo negro (o radiador ideal) supone un límite superior para la potencia emitida por los cuerpos reales.

La potencia emisiva superficial de una superficie real es menor que el de un cuerpo negro a la misma temperatura y está dada por:

Donde epsilon ( ) es una propiedad radiactiva de la superficie denominada emisividad. Con valores en el rango 0<=ε<=1, esta propiedad es la relación entre la radiación emitida por una superficie real y la emitida por el cuerpo negro a la misma temperatura. Esto depende marcadamente del material de la superficie y de su acabado, de la longitud de onda, y de la temperatura de la superficie.

Demostración matemática

Esta ley no es más que la integración de la distribución de Planck a lo largo de todas las longitudes de onda:

donde las constantes valen en el Sistema Internacional de Unidades o sistema MKS:

Puede demostrarse haciendo la integral que:

Por lo que la constante de Stefan-Boltzmann depende de otras constantes fundamentales en la forma:

Experimento del cubo de Leslie

La ley de Stefan-Boltzmann queda bastante clara con el experimento del cubo de Leslie:

En general en la emisión radiante a altas temperaturas se desprecia el efecto de la temperatura del orden de la temperatura ambiente a la que se encuentran los objetos circundantes. Sin embargo debemos tener en cuenta que esta práctica estudia esta ley a bajas temperaturas para las cuales no se puede obviar la temperatura ambiente. Esto hace ver que como el detector del sensor de radiación (una termopila no está a 0 K) irradia energía radiante y una intensidad proporcional a ésta es la que mide, luego si la despreciamos estamos falseando el resultado. Su radiación se puede cuantificar de forma proporcional a su temperatura absoluta a la cuarta potencia:

De esta forma podemos conocer la radiación neta que mide a partir del voltaje generado por el sensor sabiendo que es proporcional a la diferencia de radiación entre la absorbida y la emitida, es decir:

Por último haciendo una serie de suposiciones, como puede ser evitar que el sensor se vea influenciado por la radiación del cubo de Leslie cuando no sea necesario, tomar mediciones (podemos alejarlo), y sólo entonces podremos considerar que la temperatura del detector es la del ambiente. Con alejarlo cuando sea innecesario esta hipótesis puede ser suficiente.

Kevin Osman Perez Leon EES Secc 1

 

ENTROPIA

6

ENTROPIA

La entropía, como todas las variables de estado, dependen sólo de los estados del sistema, y debemos estar preparados para calcular el cambio en la entropía de procesos irreversibles, conociendo sólo los estados de principio y al fin. Consideraremos dos ejemplos:

1.- Dilatación libre: Dupliquemos el volumen de un gas, haciendo que se dilate en un recipiente vacío, puesto que no se efectúa reacción alguna contra el vacío, y, como el gas se encuentra encerrado entre paredes no conductoras, . por la primera ley se entiende que o:

donde y se refieren a los estados inicial y final (de equilibrio). Si el gas es ideal, depende únicamente de la temperatura y no de la presión o el volumen, y la ecuación implica que .

En realidad, la dilatación libre es irreversible, perdemos el control del medio ambiente una vez que abrimos la llave. Hay sin envergo, una diferencia de entropía , entre los estados de equilibrio inicial y final, pero no podemos calcularla con la ecuación , por que esta relación se aplica únicamente a trayectorias reversibles; si tratamos de usar la ecuación, tendremos inmediatamente la facultad de que Q = 0 para la dilatación libre - además - no sabremos como dar valores significativos de T en los estados intermedios que no son de equilibrio.

Entonces, ¿Cómo calcularemos Sf - Si para estos estados?, lo haremos determinando una trayectoria reversible (cualquier trayectoria reversible) que conecte los estados y f, para así calcular el cambio de entropía de la trayectoria. En la dilatación libre, un trayecto reversible conveniente (suponiendo que se trate de un gas ideal) es una dilatación isotérmica de VI a Vf (=2Vi). Esto corresponde a la dilatación isotérmica que se lleva a cabo entre los puntos a y b del ciclo del Carnot.

Esto representa un grupo de operaciones muy diferentes de la dilatación libre y tienen en común la única condición de que conectan el mismo grupo de estados de equilibrio, y f. De la ecuación y el ejemplo 1 tenemos.

Esto es positivo, de tal manera que la entropía del sistema aumenta en este proceso adiabático irreversible. Nótese que la dilatación libre es un proceso que, en la naturaleza se desarrolla por sí mismo una vez iniciado. Realmente no podemos concebir lo opuesto, una compresión libre en la que el gas que en un recipiente aislado se comprima en forma espontanea de tal manera que ocupe solo la mitad del volumen que tiene disponible libremente. Toda nuestra experiencia nos dice que el primer proceso es inevitable y virtualmente, no se puede concebir el segundo.

2.- Transmisión irreversible de calor. Como otro ejemplo, considérense dos cuerpos que son semejantes en todo, excepto que uno se encuentra a una temperatura TH y el otro a la temperatura TC, donde TH> TC. Si ponemos ambos objetos en contacto dentro de una caja con paredes no conductoras, eventualmente llegan a la temperatura común Tm, con un valor entre TH y TC; como la dilatación libre, el proceso es irreversible, por que perdemos el control del medio ambiente, una vez que colocamos los dos cuerpos en la caja. Como la dilatación libre, este proceso también es adiabático (irreversible), por que no entra o sale calor en el sistema durante el proceso.

Para calcular el cambio de entropía para el sistema durante este proceso, de nuevo debemos encontrar un proceso reversible que conecte los mismos estados inicial y final y calcular el cambio de entropía, aplicando la ecuación al proceso. Podemos hacerlo, si imaginamos que tenemos a nuestra disposición un deposito de calor de gran capacidad calorífica, cuya temperatura T este bajo nuestro control, digamos, haciendo girar una perilla. Primero ajustamos, la temperatura del deposito a TH a Tm, quitando calor al cuerpo caliente al mismo tiempo. En este proceso el cuerpo caliente pierde entropía, siendo el cambio de esta magnitud .

Aquí T1 es una temperatura adecuada escogida entre TH y Tm y Q es el calor extraído.

En seguida ajustamos la temperatura de nuestro depósito a Tc y lo colocamos en contacto con el segundo cuerpo (el más frío). A continuación elevamos lentamente (reversiblemente) la temperatura del depósito de Tc a Tm, cediendo calor al cuerpo frío mientras lo hacemos. El cuerpo frío gana entropía en este proceso, siendo su cambio .

Aquí T2 es una temperatura adecuada, escogida para que quede entre Tc y Tm y Q es el calor agregado. El calor Q agregado al cuerpo frío es igual al Q extraído del cuerpo caliente.

Los dos cuerpos se encuentran ahora en la misma temperatura Tm y el sistema se encuentra en el estado de equilibrio final. El cambio de entropía para el sistema completo es:

Como T1>T2, tenemos Sf >Si. De nuevo, como para la dilatación libre, la entropía del sistema aumenta en este proceso reversible y adiabático.

Nótese que, como la dilatación libre, nuestro ejemplo de la conducción del calor es un proceso que en la naturaleza se desarrolla por sí mismo una vez que se ha iniciado. En realidad no podemos concebir el proceso opuesto, en el cual, por ejemplo, una varilla de metal en equilibrio térmico a la temperatura del cuarto espontáneamente se ajuste de tal manera, que un extremo quede más caliente y en el otro más frío. De nuevo, la naturaleza tiene la preferencia irresistible para que el proceso se efectúe en una dirección determinada y no en la opuesta.

En cada uno de estos ejemplos, debemos distinguir cuidadosamente el proceso real (irreversible) (dilatación libre o transmisión del calor) y el proceso reversible que se introdujo, para que se pudiera calcular el cambio de entropía en el proceso real.

Podemos escoger cualquier proceso reversible, mientras conecte los mismos estados inicial y final que el proceso real; todos estos procesos reversibles llevarán al mismo cambio de entropía porque ella depende sólo los estados inicial y final y no de los procesos que los conectan, tanto si son reversibles como si son irreversibles.

Kevin Osman Perez Leon EES Secc 1

LA TERMODINAMICA

 

5

LA TERMODINAMICA

La Termodinámica es la parte de la Física. Ciencia que estudia la energía interna de los sistemas materiales, de su transformación entre sus distintas manifestaciones. Se puede describir mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables de estado. Es posible identificar y relacionar entre sí muchas otras variables termodinámicas (como la densidad, el calor específico, la compresibilidad o el coeficiente de dilatación), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno. Todas estas variables se pueden clasificar en dos grandes grupos: las variables extensivas, que dependen de la cantidad de materia del sistema, y las variables intensivas, independientes de la cantidad de materia.

 

Primera ley de la termodinámica

Permítase que un sistema cambie de un estado inicial de equilibrio , a un estado final de equilibrio , en un camino determinado, siendo el calor absorbido por el sistema y el trabajo hecho por el sistema. Después calculamos el valor de . A continuación cambiamos el sistema desde el mismo estado hasta el estado final , pero en esta ocasión por u n camino diferente. Lo hacemos esto una y otra vez, usando diferentes caminos en cada caso. Encontramos que en todos los intentos es la misma. Esto es, aunque y separadamente dependen del camino tomado, no depende, en lo absoluto, de cómo pasamos el sistema del estado al estado , sino solo de los estados inicial y final (de equilibrio).

Del estudio de la mecánica recordará, que cuando un objeto se mueve de un punto inicial a otro final , en un campo gravitacional en ausencia de fricción, el trabajo hecho depende solo de las posiciones de los puntos y no, en absoluto, de la trayectoria por la que el cuerpo se mueve. De esto concluimos que hay una energía potencial, funciónde las coordenadas espaciales del cuerpo, cuyo valor final menos su valor inicial, es igual al trabajo hecho al desplazar el cuerpo. Ahora, en la termodinámica, encontramos experimentalmente, que cuando en un sistema ha cambiado su estado al , la cantidad dependen solo de las coordenadas inicial y final y no, en absoluto, del camino tomado entre estos puntos extremos. Concluimos que hay una función de las coordenadas termodinámicas, cuyo valor final, menos su valor inicial es igual al cambio en el proceso. A esta función le llamamos función de la energía interna.

Representemos la función de la energía interna por la letra . Entonces la energía interna del sistema en el estado , , es solo el cambio de energía interna del sistema, y esta cantidad tiene un valor determinado independientemente de la forma en que el sistema pasa del estado al estado f: Tenemos entonces que:

Como sucede para la energía potencial, también para que la energía interna, lo que importa es su cambio. Si se escoge un valor arbitrario para la energía interna en un sistema patrón de referencia, su valor en cualquier otro estado puede recibir un valor determinado. Esta ecuación se conoce como la primera ley de la termodinámica, al aplicarla debemos recordar que se considera positiva cuando el calor entra al sistema y que será positivo cuando el trabajo lo hace el sistema.

A la función interna , se puede ver como muy abstracta en este momento. En realidad, la termodinámica clásica no ofrece una explicación para ella, además que es una función de estado que cambia en una forma predecible. ( Por función del estado, queremos decir, que exactamente, que su valor depende solo del estado físico del material: su constitución, presión, temperatura y volumen.) La primera ley de la termodinámica, se convierte entonces en un enunciado de la ley de la conservación de la energía para los sistemas termodinámicos.

La energía total de un sistema de partículas , cambia en una cantidad exactamente igual a la cantidad que se le agrega al sistema, menos la cantidad que se le quita.

Podrá parecer extraño que consideremos que sea positiva cuando el calor entra al sistema y que sea positivo cuando la energía sale del sistema como trabajo. Se llegó a esta convención, porque fue el estudio de las máquinastérmicas lo que provocó inicialmente el estudio de la termodinámica. Simplemente es una buena forma económica tratar de obtener el máximo trabajo con una maquina de este tipo, y minimizar el calor que debe proporcionársele a un costo importante. Estas naturalmente se convierten en cantidades de interés.

Si nuestro sistema sólo sufre un cambio infinitesimal en su estado, se absorbe nada más una cantidad infinitesimal de calor y se hace solo una cantidad infinitesimal de trabajo , de tal manera que el cambio de energía interna también es infinitesimal. Aunque y no son diferencias verdaderas, podemos escribir la primera ley diferencial en la forma:

.

Podemos expresar la primera ley en palabras diciendo: Todo sistema termodinámico en un estado de equilibrio, tiene una variable de estado llamada energía interna cuyo cambio en un proceso diferencial está dado por la ecuación antes escrita.

La primera ley de la termodinámica se aplica a todo proceso de la naturaleza que parte de un estado de equilibrio y termina en otro. Decimos que si un sistema esta en estado de equilibrio cuando podemos describirlo por medio de un grupo apropiado de parámetros constantes del sistema como presión ,el volumen, temperatura, campo magnético y otros la primera ley sigue verificándose si los estados por los que pasa el sistema de un estado inicial (equilibrio), a su estado final (equilibrio), no son ellos mismos estados de equilibrio. Por ejemplo podemos aplicar la ley de la termodinámica a la explosión de un cohete en un tambor de acero cerrado.

Hay algunas preguntas importantes que no puede decir la primera ley. Por ejemplo, aunque nos dice que la energía se conserva en todos los procesos, no nos dice si un proceso en particular puede ocurrir realmente. Esta información nos la da una generalización enteramente diferente, llamada segunda ley de la termodinámica, y gran parte de los temas de la termodinámica dependen de la segunda ley.

Segunda ley de la termodinámica.

Las primeras máquinas térmicasconstruidas, fueron dispositivos muy eficientes. Solo una pequeña fracción del calor absorbido de la fuente de la alta temperatura se podía convertir en trabajo útil. Aun al progresar los diseños de la ingeniería, una fracción apreciable del calor absorbido se sigue descargando en el escape de una máquina a baja temperatura, sin que pueda convertirse en energía mecánica. Sigue siendo una esperanza diseñar una maquina que pueda tomar calor de un depósito abundante, como el océano y convertirlo íntegramente en un trabajo útil. Entonces no seria necesario contar con una fuente de calor una temperatura más alta que el medio ambientequemando combustibles. De la misma manera, podría esperarse, que se diseñara un refrigerador que simplemente transporte calor, desde un cuerpo frío a un cuerpo caliente, sin que tenga que gastarse trabajo exterior. Ninguna de estas aspiraciones ambiciosas violan la primera ley de la termodinámica. La máquina térmica sólo podría convertir energía calorífica completamente en energía mecánica, conservándose la energía total del proceso. En el refrigerador simplemente se transmitiría la energía calorifica de un cuerpo frío a un cuerpo caliente, sin que se perdiera la energía en el proceso. Nunca se ha logrado ninguna de estas aspiraciones y hay razones para que se crea que nunca se alcanzarán.

La segunda ley de la termodinámica, que es una generalización de la experiencia, es una exposición cuyos artificios de aplicación no existen. Se tienen muchos enunciados de la segunda ley, cada uno de los cuales hace destacar un aspecto de ella, pero se puede demostrar que son equivalentes entre sí. Clausius la enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación). Este enunciado desecha la posibilidad de nuestro ambicioso refrigerador, ya que éste implica que para transmitir calor continuamente de un objeto frío a un objeto caliente, es necesario proporcionar trabajo de un agente exterior. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la direcciónde la transmisión del calor. La dirección se puede invertir solamente por medio de gasto de un trabajo.

Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.

Para demostrar que los dos enunciados son equivalentes, necesitamos demostrar que si cualquiera de los enunciados es falso, el otro también debe serlo. Supóngase que es falso el enunciado de Clausius, de tal manera que se pudieran tener un refrigerador que opere sin que se consuma el trabajo. Podemos usar una máquina ordinaria para extraer calor de un cuerpo caliente, con el objeto de hacer trabajo y devolver parte del calor a un cuerpo frío.

Pero conectando nuestro refrigerador "perfecto" al sistema, este calor se regresaría al cuerpo caliente, sin gasto de trabajo, quedando así utilizable de nuevo para su uso en una máquina térmica. De aquí que la combinación de una maquina ordinaria y el refrigerador "perfecto" formará una máquina térmica que infringe el enunciado de Kelvin-Planck. O podemos invertir el argumento. Si el enunciado Kelvin-Planck fuera incorrecto, podríamos tener una máquina térmica que sencillamente tome calor de una fuente y lo convierta por completo en trabajo. Conectando esta máquina térmica "perfecta" a un refrigerador ordinario, podemos extraer calor de un cuerpo ordinario, podemos extraer calor de un cuerpo caliente, convertirlo completamente en trabajo, usar este trabajo para mover un refrigerador ordinario, extraer calor de un cuerpo frío, y entregarlo con el trabajo convertido en calor por el refrigerador, al cuerpo caliente. El resultado neto es una transmisión de calor desde un cuerpo frío, a un cuerpo caliente, sin gastar trabajo, lo infringe el enunciado de Clausius.

La segunda ley nos dice que muchos procesos son irreversibles. Por ejemplo, el enunciado de Clausius específicamente elimina una inversión simple del proceso de transmisión de calor de un cuerpo caliente, a un cuerpo frío. Algunos procesos, no sólo no pueden regresarse por sí mismos, sino que tampoco ninguna combinación de procesos pueden anular el efecto de un proceso irreversible, sin provocar otro cambio correspondiente en otra parte.

Tercera ley de la termodinámica.

En el análisisde muchas reacciones químicas es necesario fijar un estado de referencia para la entropia. Este siempre puede escogerse algún nivel arbitrario de referencia cuando solo se involucra un componente; para las tablas de vapor convencionales se ha escogido 320F. Sobre la base de las observaciones hechas por Nernst y por otros, Planck estableció la tercera ley de la termodinámica en 1912, así:

la entropia de todos los sólidos cristalinos perfectos es cero a la temperatura de cero absoluto.

Un cristal "perfecto" es aquel que esta en equilibrio termodinámica. En consecuencia, comúnmente se establece la tercera ley en forma más general, como:

La entropia de cualquier sustancia pura en equilibrio termodinamico tiende a cero a medida que la temperatura tiende a cero.

La importancia de la tercera ley es evidente. Suministra una base para el calculo de las entropías absolutas de las sustancias, las cuales pueden utilizarse en las ecuaciones apropiadas para determinar la dirección de las reacciones químicas.

Una interpretación estadística de la tercera ley es más bien sencilla, puesto que la entropia se ha definido como:

En donde k es la constante de Bolzmall es la probabilidad termodinámica. En vista de la anterior disertación, la tercera ley equivale a establecer que:

cuando 0.

Esto significa que sólo existe una forma de ocurrencia del estado de energía mínima para una sustancia que obedezca la tercera ley.

Hay varios casos referidos en la literatura en donde los cálculos basados en la tercera ley no están desacuerdo con los experimentos. Sin embargo, en todos los casos es posible explicar el desacuerdo sobre la base de que la sustancia no es "pura", esto es, pueda haber dos o más isótopos o presentarse moléculas diferentes o, también, una distribución de no equilibrio de las moléculas. En tales casos hay más de un estado cuántico en el cero absoluto y la entropia no tiende a cero.

Kevin Osman Perez Leon EES Secc 1